skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Hui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The dynamics of star-forming gas can be affected by many physical processes, such as turbulence, gravity, supernova explosions, and magnetic fields. In this paper, we investigate several nearby star-forming regions (Orion, Upper Sco, Taurus, and Perseus) for kinematic imprints of these influences on the newly formed stars. Using Gaia DR3 astrometry and APOGEE DR17 radial velocities, we compute first-order velocity structure functions (VSFs) of young stars in galactic Cartesian coordinates in both 6D (3D positions and 3D velocities) and 4D (3D positions and each 1D velocity) to identify signatures of turbulence and anisotropic motion. We also construct 3D and 1D radial velocity profiles to identify coherent expansion trends, and compare stellar proper motions to plane-of-sky magnetic field orientations in Taurus and Perseus. We find that the VSFs are mildly anisotropic, with slightly different amplitudes, slopes, or features in different directions in several groups, but in general, they are all consistent with Larson’s Relation at intermediate length scales, especially in less compact groups. In several cases, the VSFs exhibit features suggestive of local energy injection from supernovae. Radial velocity profiles reveal clear anisotropic expansion in multiple groups, with the most extreme cases corresponding to those with the most anisotropic VSFs. In Perseus, we find that the motions of young stars are preferentially perpendicular to the local magnetic field. We find multiple, overlapping causes in each group for the observed kinematics. Our findings support that young stars remember more than just the turbulent state of their natal clouds. 
    more » « less
    Free, publicly-accessible full text available September 5, 2026
  2. Free, publicly-accessible full text available June 1, 2026
  3. Abstract We study spin dynamics and quantum magnetism with ultracold highly-magnetic atoms. In particular, we focus on the interactions among rare-earth atoms localized in a site of an optical-lattice potential, modeled as a cylindrically symmetric harmonic oscillator in the presence of a weak external magnetic field. The interactions between the atoms are modeled using a multi-channel Hamiltonian containing multiple spin–spin and anisotropic spin–orbit interactions with strengths that depend on the separation between the atoms. We studied the eigenenergies of the atom pair in a site for different lattice geometries and magnetic field strengths. In parallel, we compared these energies to those found from a simplified approach, where the complex-collisional physics is replaced by a two-length-scale pseudopotential containing the contact and magnetic dipole–dipole interactions. The eigenenergies of this model can be computed analytically within the Born approximation as well as non-perturbatively for strong contact interactions. We have shown that the pseudopotential model can accurately represent the multi-channel Hamiltonian in certain parameter regimes of the shape of the site of an optical lattice. The pseudopotential forms the starting point for many-body, condensed matter simulations involving many atom pairs in different sites of an optical lattice. 
    more » « less
  4. ABSTRACT The Earth's ionosphere plays a critical role in radio wave transmission, reflection, and scattering, directly affecting communication, navigation, and positioning systems. However, the comprehensive impacts of space weather remain to be fully established in cases where the ionosphere experiences strong disturbances during geomagnetic storms. We reported unprecedented observational evidence of extreme ionospheric electron density depletion and its hemispheric asymmetry during the May 10–12, 2024 super geomagnetic storm, utilizing multi-instrument ground-based and spaceborne in-situ observations. The ionospheric electron density significantly decreased, with a maximum reduction of 98% over the whole northern hemisphere for more than 2 days, causing backscatter echo failures in multiple ionosondes within the Chinese Meridian Project (CMP) monitoring network. In contrast, mid-to-low latitude regions in the southern hemisphere exhibited electron density enhancements. Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM) simulations demonstrated strong consistency with northern hemispheric observations. The vertical drift and the column integrated ratio of O and N2 (ΣO/N2) from observations and simulations indicated the deep reduction of total electron content (TEC) mainly generated by severe ion recombination associated with neutral composition changes that interacted with the disturbed electric field. The summer to winter neutral wind and asymmetry of O/N₂ were possibly responsible for the asymmetry in electron density between the northern and southern hemispheres. These results advance understanding of ionospheric storm physics by establishing causal links between magnetosphere-thermosphere coupling processes and extreme electron density variations, while providing critical observational constraints for space weather model refinement. 
    more » « less
  5. Free, publicly-accessible full text available February 7, 2026
  6. Free, publicly-accessible full text available July 30, 2026
  7. Abstract Magnetic reconnection regions in space and astrophysics are known as active particle acceleration sites. There is ample evidence showing that energetic particles can take a substantial amount of converted energy during magnetic reconnection. However, there has been a lack of studies understanding the backreaction of energetic particles at magnetohydrodynamical scales in magnetic reconnection. To address this, we have developed a new computational method to explore the feedback by nonthermal energetic particles. This approach considers the backreaction from these energetic particles by incorporating their pressure into magnetohydrodynamics (MHD) equations. The pressure of the energetic particles is evaluated from their distribution evolved through Parker’s transport equation, solved using stochastic differential equations (SDEs), so we coin the name MHD-SDE. Applying this method to low-βmagnetic reconnection simulations, we find that reconnection is capable of accelerating a large fraction of energetic particles that contain a substantial amount of energy. When the feedback from these particles is included, their pressure suppresses the compression structures generated by magnetic reconnection, thereby mediating particle energization. Consequently, the feedback from energetic particles results in a steeper power-law energy spectrum. These findings suggest that feedback from nonthermal energetic particles plays a crucial role in magnetic reconnection and particle acceleration. 
    more » « less
  8. Abstract Understanding plasma dynamics and nonthermal particle acceleration in 3D magnetic reconnection has been a long-standing challenge. In this paper, we explore these problems by performing large-scale fully kinetic simulations of multi-X-line plasmoid reconnection with various parameters in both the weak- and strong-guide-field regimes. In each regime, we have identified its unique 3D dynamics that lead to field-line chaos and efficient acceleration, and we have achieved nonthermal acceleration of both electrons and protons into power-law spectra. The spectral indices agree well with a simple Fermi acceleration theory that includes guide-field dependence. In the low-guide-field regime, the flux rope kink instability governs the 3D dynamics for efficient acceleration. The weak dependence of the spectra on the ion-to-electron mass ratio andβ(≪1) implies that the particles are sufficiently magnetized for Fermi acceleration in our simulations. While both electrons and protons are injected at reconnection exhausts, protons are primarily injected by perpendicular electric fields through Fermi reflections and electrons are injected by a combination of perpendicular and parallel electric fields. The magnetic power spectra agree with in situ magnetotail observations, and the spectral index may reflect a reconnection-driven size distribution of plasmoids instead of the Goldreich–Sridhar vortex cascade. As the guide field becomes stronger, the oblique flux ropes of large sizes capture the main 3D dynamics for efficient acceleration. Intriguingly, the oblique flux ropes can also experience flux rope kink instability, to drive extra 3D dynamics. This work has broad implications for 3D reconnection dynamics and particle acceleration in heliophysics and astrophysics. 
    more » « less